

micro:Maqueen Al游乐场项目手册 麦昆教育机器人系列 麦昆系列教程

项目一	疯狂的赛车(上)1
项目一	疯狂的赛车(下)8
项目二	极限接力(上)14
项目二	极限接力(下)18
项目三	占点竞技(上)21
项目三	占点竞技(下)27
项目四	紧急救援(上)35
项目四	紧急救援(下)42
项目五	种地小能手49
项目六	小小建筑工55
项目七	超级卖场61
项目八	唤醒城市的人66

项目九(呆卫萝卜(上)
项目九(保卫萝卜(下)
项目十月	我的世界(上)
项目十月	我的世界(下)
项目十一	蚂蚁森林(上)93
项目十一	蚂蚁森林(下)98
项目十二	荒野求生(上)105
项目十二	荒野求生(下)111
项目十三	农场主 - 循环农业114
项目十四	厂长 - 未来工厂121
项目十五	店长 - 无人超市128
项目十六	市长 - 智慧城市136

项目一 疯狂的赛车 (上)

你玩过赛车类游戏吗?想不想来一场疯狂的赛车呢?

游戏目标: 🍞

设计一款遥控赛车游戏,体验刺激的赛道狂飙。 游戏玩法

游戏中两位同学一组,组成一个赛车队。每组的1号地图为赛车场地。 在地图上的A、B、C、D区,任选两个区为起点或终点,每组自己定 义起点和终点。地图上的黑线为赛车跑道,每组在黑线上设计赛道。完成 游戏设计后,不同队伍相互挑战对方的赛车游戏。最后每人两票,选出最 佳游戏王和最佳赛车手。

<mark>-、</mark>认识硬件

1、麦昆Plus

麦昆Plus是一款功能强大的机器人,有丰富多样的玩法。它自带多种的传感器,包括巡线传感器、红外接收传感器、编码器车速反馈传感器、金属电机、蜂鸣器、RGB车灯,还有多个扩展接口,支持连接更多电子模块。

2, micro:bit

micro:bit就相当于麦昆Plus的大脑,有了micro:bit, 我们就可以编程控制麦昆Plus。micro:bit集成了很多基本 的传感器,使用micro:bit可以制作表情包、小夜灯、计步 路各种有趣的小发明。口,支持连接更多电子模块。

3、遥控手柄

遥控赛车当然少不了手柄啦,Al游乐场套件中有一个遥控手柄,只要插上micro:bit主板,就能将micro:bit变身成为一个无线遥控手柄或者是一个无线对战游戏机。手柄引脚说明如下图。

二、编程学习:小车跑起来

使用编程软件Mind+,就能让micro:bit控制麦昆Plus跑起来,让我们一起来编程吧!第一次编程前,一定要按照 以下3步进行<mark>软件设置</mark>哟!

3、示例程序:小车缓慢前行1秒

4、运行结果

连接硬件:用USB线连接电脑和micro:bit,在Mind+菜单栏"连接设备"下点选出现的"COMxx"。

上传程序:连接完成后,点击 全上传到设备,等待程序上传完成。 先将麦昆Plus前方"掌控/micro:bit"开关拨到"micro:bit"一侧,再将麦昆Plu

─侧,ī	 再将麦昆PI	us电源开	关拨到"ON'	",小车即会	≿前进1秒。

<mark>三、</mark>编程学习:遥控手柄吱吱吱

遥控手柄上有各种不同的按键,还有振动电机、蜂鸣器,对micro:bit编程,就能控制手柄!

每个小组有1个手柄,小组中两人共用一个手柄。拿出一块micro:bit,来为手柄编写第一个程序,按下手柄UP键, 让手柄上的电机发出吱吱吱的振动。

1、示例程序:遥控手柄吱吱吱

运行结果:按下UP键, 电机振动;松开UP键, 电机不振动.

2、测试程序:查看按键返回值

用串口可以很方便的查看数据,让我们用串口来查看手柄上按键UP和X的引脚返回值。示例程序:

* 串口: 串口是计算机与硬件实时通讯的一种方式。比如这个任务中, 通过串口, 可以在电脑端实时查看手柄的

数据。

3、观察发现

从串口读取的引脚值不难发现,没有按下按键时,引脚值为1;按下按键,引脚值为0。

<mark>四、</mark>编程学习:怎么遥控小车呢?

1、认识无线通讯

micro:bit自带<mark>无线通讯</mark>功能,主板之间能无线传输数据,就像手机互发消息一样。 无线通讯中,主板作为信息的发送方或接收方。比如在遥控赛车时,<mark>遥控器是发送方,小车是接收方。</mark>

3、遥控小车

在下面的学习中,小组中1人使用手柄,1人使用小车。来写一个简单的程序,用手柄按键控制小车前进、后退。 编程过程中,简单的流程图可以帮助我们理清程序思路,参照流程图也可以更好地读懂程序。下面两个程序中 都给出了程序流程图,有编程基础的同学不妨先从流程图理解编程思路,尝试独立编写出程序,其他同学可以配合 流程图理解程序。

* 在一个频道上的micro:bit会相互通信,注意每组同学要设置不一样的频道。

4、运行结果

将两个程序分别下载到手柄、小车的主板中。按下手柄上UP键,小车前进;按下DOWN键,小车后退;松开 按键,小车停止。

5、观察发现

在实际操作的过程中,你有没有遇到一些问题呢?比如手柄有时候会不灵敏,可能你按下按键了,下车没反应, 松开按键了,小车却还在运动,这是怎么回事呢?

小到手机、wifi,大到卫星通信,我们日常所见到的这些无线的通信形式都是通过 无线电波来传播的。

无线电波(一种类似于可见光的电磁辐射波)具有某种属性(例如它们的幅度,相 位或脉冲宽度),这些属性由发射机调制,使得信息可以被编码,从而可以携带信息进 行传播,这是无线电信号的发射的过程。

传送低频信号:如果想把我们的说话的声音传递出去,这是怎么办到的呢?我们的说话声音,虽然能传播一定距离,但是有限的,能不能找到一个工具,能够携带有声音的信息呢?

科学家们随后产生了这样一个设想:如果要达到同一个目的地,走路肯定不如坐车快,而且还需要一定的体力, 如果传送低频(音频)也能够象坐车那样,到地方再下车,不就完成了低频(音频)的远传了吗?所以,可以让低频 (音频)搭载在"车"上吗?

搭载高频信号:如此,又产生了使用不同的高频电磁波,把音频信号"寄载" 到这种高频电磁波上,由天线发射出去。因为高频电磁波,能够携带更多的信息, 能够更好地保持要传送信号的完整性。

已调信号

信号发射:这样,不同的发射机可以采用不同的高频电磁波频率,使彼此互不干扰。这就是信号的发射的过程。

该怎么让音频信号"下车"呢?

信号接收:无线电波传输到接收地点后, 接收机的任务是把空中传送来的电磁波接收下 来,并把它恢复成为原来的信号。接收电磁波 的任务是由接收天线来完成的。

调制载波频率:在同一时间里接收天线所接收到的信号中,不仅包括我们希望收到的信号,还包括着若干个我们不需要收听的其他频率的信号。这些无线电波之所以采用了各种不同的载波频率(高频电磁波的属性),其目的就是让接收者按照载波(搭载有音频的高频电磁波)频率的不同,设法"选择"出自己所要接收的信号。

信号还原: 接收到高频电磁波之后,通过一系列的 还原的过程,就能够得到搭载的音频了,这就是信号的接 收的过程。

micro:bit的无线通信原理:基于无线通信方法中的无线电波, micro:bit背面自带天线,可以实现两块micro:bit甚至更多micro:bit 的无线通信。

附、附录一:认识编程软件Mind+

1、Mind+介绍

Mind+是一款基于Scratch3.0开发的青少年编程软件,支持arduino、micro:bit、掌控板等各种开源硬件,只需要拖动图形化程序块即可完成编程,还可以使用python/c/c++等高级编程语言,让大家轻松体验创造的乐趣。

2、软件下载

在浏览器中输入以下网址,进入下载页面,点击立即下载则会跳转至 MIND+ 客户端下载页面,选择适合自己电脑 系统的版本下载即可。下载地址: <u>http://mindPlus.cc</u>

3、界面认知

按照功能划分, Mind+(上传模式)界面可分为以下几个部分:

			_实时模式/上传模	IC+	设置,
i 🖆 Min	逾→项目 ▼ 教程 ▼ 连接设备 ▼	苏 苗栏		() RRISH RHR	A LINKA O
模块			口 • • • 土侍到设备	arduíno C 🔹	
1081	1214		日动生成	手动编辑	
٠	8H5 1 8		1 * /*! 2 * MindPL 3 * noSoar	us d	î
这算符	SIEDH		4 * 5 */	代码查看区	ų
交量	Rettor ID #		7 8 // 主程序 9 x world setu	并加 2011 - 1	
函数			10 11 }	n /	
指	NUMPER DE		13 14 }	01)
全		编辑区↩			
t					
	如果 那么热行				
			() ()	串口区₊	
	\$0.00 BF6.3%F7				
			000		
			÷ *	۲	:=
1	扩展				

类别	功能				
菜单栏	项目:可以新建项目、打开项目、保存项目等。 教程:在这里能找到很多使用教程和示例程序哦! 连接设备:能检测到连接的设备,显示串口,可以选择连接或是断开设备。				
上传模式 / 实时模式	"上传模式 / 实时模式"按钮:切换程序执行的模式。 上传模式:将程序上传到硬件设备中执行; 实时模式:将脚本区可执行的程序在硬件和 Mind+ 舞台中实时执行。				
设置区	设置:用于设置软件主题、语言、学习基本案例,在线或加群寻求帮助。				
指令区	指令模块:这里包括编程需要的许多模块和指令,将不同指令按一定逻辑结合就能实现各种各 样的功能。				
扩展	扩展按钮:可以选择更多额外的道具,支持各种硬件编程。				
编辑区	程序编辑区:组合指令进行图形化编程的区域。通过鼠标拖拽就可以将需要的指令移动到脚本 区适当位置进行组合。				
代码查看区	自动生成:显示图形化指令相对应的代码。 手动编辑:可自己在此区域输入代码编程。				
串口区	串口区:可打开 / 关闭串口开关、滚屏开关、清出输出、波特率口、串口输入框、输出格式 控制等。 黑色区域:可显示下载状况,比如可以看到程序运行状况,显示串口通信数据等。				

项目一 疯狂的赛车(下)

简单回顾一下上节课的内容:

- ■认识麦昆Plus、遥控手柄、micro:bit;
- ■学习micro:bit的无线通信;
- 使用无线通信, 遥控麦昆Plus。

在这节课,同学们将会基于上面学习的 这些知识,完成一场赛车游戏设计!

明确目标

- 1、优化遥控程序, 解决遥控器不灵敏的问题。
- 2、每组设计一个赛车游戏,设计赛道、完善规则、进行比赛。

项目分工-WHO AM I?

分工	项目经理	程序员	设计师	工程师
责任	整体方案规划	编程	外观设计	建造与制作
姓名				

方案规划: 🔲

头脑风暴

- 1、遥控器不灵敏可能是什么原因导致的呢?和无线通信有关系吗? (无线数据传输的不稳定性)
- 2、你觉得什么样的赛车跑道好玩?是简单一点还是复杂一点?
- 3、是规则简单容易上手,还是稍微难一点呢?当在游戏中设置适当的奖励或者惩罚,是不是会更有可玩性呢?
- 4、你还有其他的问题吗?不妨记录下来吧!

计划书

疯狂的赛车-计划书					
项目分解	负责人				
1、优化遥控程序	程序员				
2、设计赛道	完成赛车跑道设计,测试可行性。	设计师			
3、完善规则	细化比赛规则,让赛车游戏更有可玩性。	项目经理			
4、赛道测试	遥控赛车,在正式比赛前做最后的测试和调整。	工程师			

1、什么是事件程序呢?

指令 😳 当接收到 (无线数据) 相当于主程序中的一个事件程序。什么是事件程序呢?

打个比方吧,比如你在家好好的看电视,突然家里电话铃响了,那么你不得不停下看电视,先去接电话,等接完 电话后,你又可以继续看电视啦!在整个过程中,看电视就是主程序,接电话就是一个事件程序,电话铃响就是事件 的触发条件。 ○ 当接收到 无线数据 指令就是一个事件,触发条件是接收到,无线数据 事件过程就是接收到数据后要做的事。

使用事件程序可能带来的问题:

事件程序可能带来什么问题呢?不妨利用串口来查看一下吧!分别给遥控器和小车运行下面程序,用串口查看小 车接收的数据。

运行结果:随着按键UP、DOWN的按下和松开,小车串口区不断输出无线数据。

	-		
设计赛道	手柄操作	串口显示	
	按下UP键	串口输出"U"	
正常情况下	按下DOWN键	串口输出"D"	
	不按按键	串口输出"S"	
出错情况下	按下按键	输出"S"	
	不按按键	输出"U"或"D"	

从串口可以明显看出,遥控按键操控不灵敏,时常会出错。

由于串口不间断的输出数据,所以事件 🖸 当接收到 无线数据 在不停的执行。就像有人给你的手机发信息一样,发一 条,你可以点开看一条,但是当发送的速度越来越快,你可能就来不及一条一条点开了。

结论: 所以当事件程序不断的、快速的被触发时, 可能会出现处理不过来的情况。

既然不间断的触发可能会引起混乱,能否减少触发次数呢?比如在遥控小车时,按下或松开一次按键,只发送一 条无线数据。

2、遥控手柄-只发一次无线数据

以UP键为例,按下UP键,无线数据发送一次"U";松开UP键,无线数据发送一次"S"。即只有按键状态发生改变 时,才发送数据。状态变化是指:按下UP键,UP键的状态从松开到按下变化;松开UP键,UP键的状态从按下到松开 变化。

运行结果:小车的程序不变,在串口区查看小车接收到的无线数据的读值。

手柄操作	串口显示
按下一次UP键	串口输出一次"U"
松开一次UP键	串口输出一次"S"

3、无线通信的干扰

从上节课的趣味知识中,我们知道micro:bit无线通信是通过无线电波来传播的,它在传播过程中会受到电磁干扰, 导致数据传送失败。日常生活中充满了各种电磁波,比如打电话、WIFI等等,这些电磁波都有可能成为干扰。

如何应对电磁干扰:为了减少电磁干扰的影响,要增加无线数据的发送次数,来确保数据的正常传输。比如发送 3次,并且每次间隔很短的时间,来确保接收方可以收到数据。

示例程序:

4、完整程序

解决了手柄的问题,接下来每个小组在程序员的主导下编写完整程序吧。在编写程序时,先想一想哪些是必须要 实现的基本功能,在完成基本功能后,再挑战更好玩的应用!下面给出了简单案例,每个小组可以自由发挥。

- 基本功能:按下遥控上的4个按键,能对应控制小车完成前进、后退、左转、右转。
- 编程挑战:小车能控制变速;为小车增加丰富的灯光效果,让它看起来更酷!
- 编程技巧:对于难度比较高的程序,可以画流程图整理编程思路。

手杯	 冠程序
定义 LEFT键	定义 RIGHT键
如果 _ 变量 S3 = 0 那么执行	如果 _ 变量 S4 = 0 那么执行
如果 读取数字引脚 P14 • 那么执行	如果 读取数字引脚 P15 - 那么执行
重复执行 3 次	重复执行 3 次
● 通过无线发送 S	● 通过无线发送 S
等待 0.01 秒	等待 0.01 秒
设置 S3 • 的值为 1	设置 S4 - 的值为 1
如果 _ 变量 S3 = 1 那么执行	如果 _ 变量 S4 = 1 那么执行
如果 非 •• 读取数字引脚 P14 • 那么执行	如果 非 ••• 读取数字引脚 P15 • 那么执行
重复执行 3 次	重复执行 3 次
● 通过无线发送 ●	● 通过无线发送 R
等待 0.01 秒	等待 0.01 秒
设置 S3 • 的值为 ①	设置 S4 • 的值为 0

*遥控程序在后面的课程中经常用到,建议老师引导学生将上面两个程序都保存好,方便以后使用。

二、设计赛道

先在1号地图上选出起点、终点,在规划赛道。优秀的设计师会在动手之前先画出设计图,每个小组尝试在设计师的主导下画出<mark>赛道设计草图。</mark>

规划好赛道后,遥控麦昆Plus多跑几遍,看看赛道设计的是否合理。

配合设计的赛道,由项目经理主导,一起来细化赛车游戏的规则。

这是我们第一次设计规则,建议列举出3-5条即可。讨论规则时大家可能会有不同的意见,可以投票决定,组员 认可度越高的规则越重要。下面给出了几个例子。

1	例1: 比赛时, 黑线要始终在小车垂直投影里, 否则算赛车跑出赛道, 跑出赛道则比赛结束
2	例2:比赛过程中,不能用手触摸小车
3	例3:两队依次在自己和对方的地图上跑一轮,两轮用时少者胜
4	
5	

四、赛道测试

遥控你的赛车实测一下赛道和规则的可行性,再做最后的赛前调整。

在比赛环节中还能提供更多的人性化考虑,比如如何让其他组的成员快速明白游戏规则呢?一个一个介绍吗?或 许做一个规则展示牌会更加方便喔!

项目展示:赛车也疯狂 🔮

相信每个小组都圆满完成了整个项目,现在让我们一起来一场疯狂的赛车吧。主动邀请其他小组来你们组设计的赛道上狂飙吧,比比谁跑的更好。小组成员也可以带上自己的赛车去挑战其他组。

为了方便记录,建议每个小组自制一张计分表。

计分表						
比赛场次 队伍名 成绩 队伍名 成绩						

玩的过程中不要忘记送出投票贴纸哦,每人两票,投出你心中的最佳游戏王和最佳赛车手。

我的收获

最后,这个项目到此结束啦,项目完成过程中每个小组成员都承担了不同的角色,在这个角色上你有哪些收获 呢?又获得了哪些建议呢?不妨做个简单的记录吧。

你的角色	
自己的收获	
得到的建议	